A Jacobi-Davidson Type Method for a Right Definite Two-Parameter Eigenvalue Problem

نویسندگان

  • Michiel E. Hochstenbach
  • Bor Plestenjak
چکیده

We present a new numerical iterative method for computing selected eigenpairs of a right definite two-parameter eigenvalue problem. The method works even without good initial approximations and is able to tackle large problems that are too expensive for existing methods. The new method is similar to the Jacobi–Davidson method for the eigenvalue problem. In each step, we first compute Ritz pairs of a small projected right definite two-parameter eigenvalue problem and then expand the search spaces using approximate solutions of appropriate correction equations. We present two alternatives for the correction equations, introduce a selection technique that makes it possible to compute more than one eigenpair, and give some numerical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Jacobi-Davidson Type Method for the Two-Parameter Eigenvalue Problem

We present a new numerical method for computing selected eigenvalues and eigenvectors of the two-parameter eigenvalue problem. The method does not require good initial approximations and is able to tackle large problems that are too expensive for methods that compute all eigenvalues. The new method uses a two-sided approach and is a generalization of the Jacobi– Davidson type method for right d...

متن کامل

Jacobi-Davidson methods for polynomial two-parameter eigenvalue problems

We propose Jacobi–Davidson type methods for polynomial two-parameter eigenvalue problems (PMEP). Such problems can be linearized as singular two-parameter eigenvalue problems, whose matrices are of dimension k(k + 1)n/2, where k is the degree of the polynomial and n is the size of the matrix coefficients in the PMEP. When k2n is relatively small, the problem can be solved numerically by computi...

متن کامل

A Jacobi-Davidson method for two-real-parameter nonlinear eigenvalue problems arising from delay-differential equations

The critical delays of a delay-differential equation can be computed by solving a nonlinear two-parameter eigenvalue problem. The solution of this two-parameter problem can be translated to solving a quadratic eigenvalue problem of squared dimension. We present a structure preserving QR-type method for solving such quadratic eigenvalue problem that only computes real valued critical delays, i.e...

متن کامل

Computing eigenvalues occurring in continuation methods with the Jacobi-Davidson QZ method

Continuation methods are a well-known technique for computing several stationary solutions of problems involving one or more physical parameters. In order to determine whether a stationary solution is stable, and to detect the bifurcation points of the problem, one has to compute the rightmost eigenvalues of a related, generalized eigenvalue problem. The recently developed Jacobi-Davidson QZ me...

متن کامل

A Jacobi–Davidson type method for the product eigenvalue problem

We propose a Jacobi–Davidson type technique to compute selected eigenpairs of the product eigenvalue problem Am · · ·A1x = λx, where the matrices may be large and sparse. To avoid difficulties caused by a high condition number of the product matrix, we split up the action of the product matrix and work with several search spaces. We generalize the Jacobi–Davidson correction equation, and the ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2002